w^2-10w-5=0

Simple and best practice solution for w^2-10w-5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2-10w-5=0 equation:



w^2-10w-5=0
a = 1; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·1·(-5)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{30}}{2*1}=\frac{10-2\sqrt{30}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{30}}{2*1}=\frac{10+2\sqrt{30}}{2} $

See similar equations:

| 7/10-t/2=1 | | 2=250/x | | -3x+9=x+5 | | x2+7x-10=0 | | b2-21/28=-12/28 | | 3/q=24/56 | | 10•x/2+6=8 | | 2/3d-7=11 | | 15=-3/8x²+6x-5 | | 6+3z+1/8=2z+11 | | 2(x-3)^2=7 | | -3(5p+4)-2(4-11p)=3(6+2p) | | 3(m-6)+8=4(m+7) | | x/7+x/4=9-7 | | -4(7n-2)-6=170 | | 6x-4(x+2)=10 | | -9x-31+6x=29 | | 9.9x+62.62=-10.1x+61.52 | | -28=2x+6(x-2) | | 3t+4=12+4t | | 11n-12=65 | | m^2=-4m+60 | | 15x2x=3x-15 | | 15+9-6d=-9(d+3) | | 10.9-0.4b+2.5-0.7b=24-1.1b-3.7 | | 7.6x-1.8=28.6 | | -40=-7+3r | | 3.4t+0.08=12 | | -2(5x-1)-3=11 | | -2x-129-8x=211 | | -6(n+7)-5(1-8n)=-13 | | 9×n=81 |

Equations solver categories